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In this study, 15 parameters representing textile properties are evaluated by the psychophysical method
of categorical judgment with samples presented either in a light booth or on a display to investigate
human visual perception based on the textural features of textiles. Visual perceptions of textiles can
be expressed by the properties of regularity, smoothness, and warmth, which respectively explain the
geometric placement rules of primitive elements, depth information, and emotion of textiles. Textiles
with large primitive elements have high regularity and coarseness, whereas textiles with subtle primitive
elements exhibit randomness and smoothness. Texture analysis results of the surface samples coincide well
with those of display samples.
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Texture is one of the key factors in textile apparel design.
The textural features of textiles can express the unique
style and character of modern fashion. Although the tac-
tile perception of textiles has been widely studied[1] and
compared with visual experiments[2], more studies are
required to analyze the visual perceptual effect of textile
properties, which is presented as a combination of color
and texture according to evaluations obtained using the
psychophysical method of categorical judgment[3] and
pair comparison[4].

A texture is arranged and combined with elements of
diverse properties, causing perceptual disparities in uni-
formity, coarseness, regularity, line-like, directionality,
randomness, and so on[5]. Properties that consumers
use to discriminate between different textural patterns
include coarseness, contrast, complexity, busyness, direc-
tionality, and texture strength. In general applications,
the results of texture measurements represent part of
the aforementioned textural properties[6]. Based on an
analysis of psychophysical assessments, the perceptual
dimensions of textiles can be employed to develop a
perceptual model that corresponds to human visual per-
ceptions. Collecting various kinds of textile samples is
relatively difficult; thus, determination of whether or not
surface samples can be substituted by display samples
in visual experiments for texture and color evaluation is
meaningful. In this letter, the perceptual properties of
surface and display textile samples are evaluated, and
results of texture analysis for surface samples are dis-
cussed. Comparisons between surface and display sam-
ples are also implemented to build a perceptual model
and clarify whether or not display samples can be used
as alternatives to surface samples for future research.

Fifty-seven textile samples from 15 color centers were
selected for this study. Each color center presented 2 to 5
textures, some of which are illustrated in Fig. 1. Accord-
ing to the results of a pilot experiment, the samples were
classified into five categories based on the size of the
texture elements. The spectral reflectance of all of the
samples was measured using a spectrophotometer (Color
Eye 7000A, GretagMacbeth, USA), and CIELAB colori-

metric data for each color center were calculated using
the CIE D65 and 1964 standard colorimetric observer,
as listed in Table 1. To classify the textures adopted in
this study for further analysis, each textile sample was
given a unique name combining its color and texture,
as shown in Fig. 1; in Fig. 1, letters stand for colors
whereas numbers refer to levels of texture. For example,
O1 indicates a sample with orange color and the lowest
texture level of 1, as presented by BR1 in Fig. 1.

A panel of 10 observers (5 females and 5 males) from
Zhejiang University participated in the psychophysical
evaluations. All of the observers were 23–35 years of age
and had normal color vision according to the Ishihara
test. The experiment was divided into two sessions. In
the first session, textile surface samples were visually
estimated. In the second session, simulated versions of
the textile samples presented on a display were assessed.

In the surface sample experiments, an illuminating and
viewing geometry of 45/0 as well as a viewing distance
of 50 cm are adopted; these details correspond to a view-
ing angle of 6˚ when the observer is positioned on a
chin-rest. The test sample was placed at the center of
the bottom panel in the light booth of a GretagMacbeth
SpectraLight III instrument to ensure uniform illumina-
tion by the D65 simulator with a white point luminance
of 318 cd/m2. At the beginning of the visual experiment,
every observer was subjected to 2 min of dark adaption
and followed by 1 min of light adaption[7].

For the display sample experiments, textile surface
samples were photographed by a digital camera (D3X,
Nikon, Japan) in a light booth with a setup identical to
that used for the surface sample session. Camera char-
acterization based on the polynomial regression model[8]

was performed to convert the RGB digits of the captured
images to their corresponding CIEXYZ values, followed
by transformation of the CIEXYZ data to RGB val-
ues in a professional liquid crystal display (ColorEdge
CG241W, Eizo, Japan) through colorimetric character-
ization of the gain–offset–gamma model[9]. The mean
accuracy of camera characterization for all 57 samples
is 1.72 ∆E∗

ab units, whereas the mean accuracy of display
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Fig. 1. (Color online) Textile samples with different colors
and textures.

Table 1. CIELAB Values at the Color Centers of the
Textile Samples

Color Centers L∗ a∗ b∗

White (W) 99.16 0.12 4.59

Light-Blue (LB) 92.24 −3.97 −6.28

Bright-Red (BR) 89.31 17.34 1.11

Red (R) 45.87 62.78 34.38

Orange (O) 58.10 43.12 28.12

Green (G) 55.89 −20.75 21.63

Yellow (Y) 83.04 16.46 66.60

Blue (B) 61.26 −15.05 −27.92

Purple (P) 68.74 10.07 −27.85

Bright-Yellow (BY) 80.19 4.37 13.72

Grey (Gr) 45.26 −0.03 −2.42

Light-Purple (LP) 23.83 16.91 1.05

Dark-Blue (DB) 23.62 0.72 −11.69

Dark-Orange (DO) 36.23 6.98 7.59

Black (K) 21.82 0.25 −0.60

characterization is 0.93 ∆E∗

ab units; these values are com-

parable those reported by other studies[10]. The average
color difference between the surface samples in the light
booth and the display is 3.58 ∆E∗

ab; in the case of samples
out of the color gamut of the display, a maximum color
difference of 7.52 ∆E∗

ab is observed. During the experi-
ment, the viewing distance was fixed at 100 cm with the
observer positioned on a chin-rest; thus, a viewing angle
of about 7◦ is obtained. The test sample was presented in
the central region against a background of neutral gray
with 20% of the peak white luminance of the display.

Fifteen very frequently used visual perceptual prop-
erties that could exactly represent human perception
for textures were estimated in a dark room for tex-
tiles, including contrast, repetitiveness, busyness, ran-
domness, smoothness, strength, directionality, complex-
ity, fineness, regularity, linelikeness, uniformity, warmth,
activeness, and relaxation[2,4,6,11]. These properties were
assessed using a 5-point numerical category scale, rang-
ing from 1 (lowest attribute) to 5 (highest attribute), to
describe perceptual feelings; the description for contrast
is listed in Table 2 as an example. In total, 17,100 judg-
ments were collected throughout the entire visual exper-
iment, i.e., 2 sample modes (surface and display) × 15
properties × 57 samples × 10 observers.

To evaluate inter-observer accuracy, the coefficient of
variation (CV) was employed as a statistical measure to
represent the discrepancy between two datasets, as shown
in the following equation:

CV =
100

y

√

∑

(xi − yi)
2

n
, (1)

where xi indicates the individual observer data for the
ith sample, yi indicates the average data for all observers
of the ith sample, y indicates the average data for yi, and
n indicates the number of judgments. The mean observer
accuracy is 24 CV units, ranging from 18 to 30, for the
surface sample session and 26 CV units, ranging from
20 to 33, for the display sample session. Compared with
published studies[12,13], the observer variation obtained
in this work is acceptable for representing the credibil-
ity of the experimental data. The observer accuracy for
the visual assessment of surface samples is better than
that for display samples. However, the inter-observer
accuracy for assessments of relaxation, complexity, and
strength properties is very poor, which indicates that
these three properties are difficult to visually estimate.

The raw data of the experimental results assigned by
the observers are categorical grades, not interval-scaled
values. Thus, the equal interval scaled values for each
property were obtained by applying Case V of Thur-
stone’s law of comparative judgment[14]. Firstly, the raw
data were converted to a frequency matrix denoting the
numbers of individual categorical grades from which the
cumulative frequency matrix can be obtained by calcu-
lating the cumulative sum of the frequency values. A
cumulative probability matrix was then deduced and
further converted to the z-score matrix according to the
inverse of the standard normal cumulative distribution.
Finally, the scale values of the categorical judgments
were computed from the difference matrix and categori-
cal boundary estimations of the z-score values.

To discuss the relationships among different properties
evaluated in this study, the scale values were processed
by factor analysis based on the principal components
analysis method together with an orthogonal rotation
technique. Three components are extracted from the
experimental data of the surface and display samples,
as summarized in Table 3. The results marked in bold
font indicate that the properties can be categorized to
the corresponding component; here, the absolute val-
ues stand for the relevant contributions. Three factors
accounting for 83.07% and 82.74%, among which compo-
nent 1 contributes 44% and 38% of the total variance, are
extracted for the surface and display samples. In both
cases, the properties of repetitiveness, regularity, linelike-
ness, directionality, randomness, busyness, and strength
are related to component 1. Component 2 comprises

Table 2. Description of Numerical Category for
Contrast

Category Definition
1 Strongly Low Contrast
2 Low Contrast
3 Moderately
4 High Contrast
5 Strongly High Contrast
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uniformity, smoothness, fineness, contrast, and complex-
ity; warmth, activeness, and relaxation make up com-
ponent 3. Surface and display samples feature the same
underlying dimensions for these 15 visual properties.

Given that most of the crucial textile properties are
categorized as components 1 and 2, two-dimensional
factor plots of these two components are drawn by the
factor loadings listed in Table 3 to further investigate the
discrepancies among the 12 properties involved; plots for
surface and display samples are shown in Figs. 2(a)
and (b), respectively. Most of the properties may be
found at similar locations in these two plots. Compo-
nent 1 represents regularity in texture, which appears
to be the most important feature used by observers
in distinguishing textures. Regularity is significantly
correlated (p <0.005) with the properties of repetitive-
ness, directionality, linelikeness, and randomness. The
Pearson correlation coefficient between the scale val-
ues of the regularity property and the combination of
other properties in component 1 is 0.998; thus, com-
ponent 1 can be interpreted by the regularity property
and modeled by the combination of a primitive element
and the placement rules that specify how this element
can be replicated. The smoothness property also has
obvious correlations (p <0.005) with the properties of
uniformity, contrast, fineness, and complexity. Com-
ponent 2 can be explained by the smoothness property
with a Pearson correlation coefficient of 0.997 between
the smoothness property and component 2, whereas the
warmth property can stand for component 3 with a Pear-
son correlation coefficient of 0.812 between the warmth
property and the properties of activeness and relaxation.
In total, the components extracted from the display
samples are very similar to those extracted from the sur-
face samples. Completely non-repetitive textures can be

adequately described through fractal dimensions corre-
sponding to the orthogonal regularity and smoothness
properties, which are a measure of surface coarseness[15].

Fig. 2. Factor plots of the 12 properties involved in compo-
nents 1 and 2 for surface and display samples: (a) surface
samples; (b) display samples.

Table 3. Factor Matrix of 15 Properties of Surface and Display Samples

Surface Samples Display Samples

Component 1 Component 2 Component 3 Component 1 Component 2 Component 3

Directionality 0.970 −0.010 −0.089 0.982 −0.055 −0.055

Regularity 0.965 0.204 −0.029 0.982 0.018 −0.043

Repetitiveness 0.956 0.147 0.068 0.956 0.152 −0.052

Randomness −0.947 −0.225 0.080 −0.949 0.221 0.071

Linelikeness 0.935 0.065 −0.176 0.942 0.228 −0.012

Busyness 0.617 −0.220 0.067 0.792 0.543 0.008

Strength 0.686 −0.623 0.147 0.854 0.203 −0.003

Smoothness 0.009 0.951 0.014 −0.110 −0.960 −0.114

Uniformity 0.112 0.947 −0.013 0.089 −0.958 −0.145

Fineness 0.195 0.932 −0.098 0.111 −0.947 −0.174

Contrast 0.342 −0.835 0.011 0.279 0.873 0.216

Complexity −0.245 −0.759 −0.094 0.238 0.516 −0.249

Warmth 0.016 −0.126 0.912 0.060 0.147 0.931

Activeness 0.132 −0.005 0.902 0.096 0.143 0.930

Relaxation −0.269 0.109 0.686 0.136 −0.013 −0.231
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Fig. 3. (Color online) Scale values for textiles with large prim-
itive elements but different colors: (a) surface samples; (b)
display samples.

Strength, which is highly related to other properties
highlighted in recent published research[6], contributes
nearly equally to components 1 and 2 for surface sam-
ples, as shown in Fig. 2; thus, strength is difficult to
classify into any principal component. A strong corre-
lation with a Pearson correlation coefficient of 0.949 is
found between strength and the combination of contrast,
regularity, and repetitiveness. As the impact of strength
is related to those of contrast, regularity, and repetitive-
ness, strength is designated a high-level property rather
than a basic independent property.

All of the textile samples with similar textural features
but different colors or with the same color but different
textural features may be assigned to one of the follow-
ing groups. One group of 4 samples with the same tex-
ture level of 5 but different color centers, including O5,
BY5, LP5, and DO5, are compared. The scale values of
regularity, smoothness, and warmth are plotted for the
surface and display samples in Figs. 3(a) and (b), respec-
tively, to reveal similar trends. The regularity property
has high scale values, which indicates that all of the sam-
ples in this group are highly repetitive and directional.
Comparatively low scale values for the smoothness prop-
erty suggest that samples with large texture elements
are relatively rough. The scale values of the smoothness
property for the display samples are lower than those
for the surface samples because the high luminance in
the light booth diminishes the contrast in surface sam-
ples, and textiles with low contrast show obscure texture
depths that appear smoother. This finding verifies that
evaluations for contrast are significantly correlated with
those for smoothness. Warmth mainly depends on colors
because its scale values are considerably different among
textiles with different colors.

Another group of textiles with the same texture level
of 2 but different color centers includes samples LB2,
R2, G2, B2, P2, LP2, and DB2. Figures 4(a) and (b)
demonstrate the scale values of regularity, smoothness,
and warmth for surface and display samples, respectively.
Evident differences in characteristics between these tex-
tile samples and those with large primitive elements are
observed. The textiles in this group have low scale val-
ues for regularity but high scale values for smoothness;
thus, the primitive elements of these samples are obscure

and the contrast is low. Warmth, which is dependent on
the colors of the textile samples, shows features similar
to those described in the first group.

The scale values of regularity, smoothness, and warmth
for the surface and display samples DO1, DO2, DO3,
DO4, and DO5 are plotted in Figs. 5(a) and (b) re-
spectively; in these plots, variation trends are similar for
different sample modes. These samples have the same
color but different texture levels. Apparent variations
are found in the scale values for the properties of regular-
ity and smoothness, whereas the scale values for warmth
are relatively consistent. This result again confirms that
evaluations of warmth are dependent upon color.

The regularity property demonstrates the geometric
placement rules[13] of primitive elements; the smooth-
ness property explains the depth information of tex-
tiles; the warmth property represents emotions for tex-
tiles that vary with colors. Compared with published
studies[4,6,13], the evaluated perceptions of regularity,
smoothness, strength, complexity, and warmth properties
in the present work are similar, but different perceptual
assessments for contrast and busyness are observed be-
cause of differences in the textile samples adopted among
studies.

To determine correlations between assessments from
the surface and display samples precisely, the scale val-
ues of the perceptual properties of surface and display
samples are compared with each other, and their cor-
responding Pearson correlation coefficients are listed in
Table 4. All of the properties are significantly related
(p <0.005) and, except for the complexity and relax-
ation properties, show good consistency. Almost all of
the scale values of complexity for display samples are
higher than those for surface samples. This finding may
be likely attributed to differences in the luminance used
in viewing conditions because high luminance in the light
booth decreases contrast and degrades details. Obvious
discrepancies also occur in evaluations of the relaxation
property, which may be explained by inherent difficulties
in assessing relaxation and complexity, as demonstrated
by the corresponding large CV values of observer accu-
racy. Despite these minor differences, however, overall
consistency is found between scale values for the surface
and display samples.

Fig. 4. (Color online) Scale values for textiles with subtle
texture elements but different colors: (a) surface samples; (b)
display samples.

Table 4. Pearson Correlation Coefficients of Perceptual Properties between the Surface and Display Samples

Contrast Repetitiveness Busyness Randomness Smooth Strength Directionality Complexity

0.821 0.891 0.743 0.903 0.781 0.847 0.942 0.295

Fineness Regularity Linelikeness Uniformity Warmth Activeness Relaxation Overall

0.867 0.896 0.903 0.809 0.900 0.892 0.279 0.863
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Fig. 5. (Color online) Scale values for textiles with the same
color but different textures: (a) surface samples; (b) display
samples.

Table 5. Pearson Correlation Coefficients of
Components of Surface and Display Samples

Surface/s
Component 1 Component 2 Component 3

Display Sample

r 0.951 0.935 0.758

p 0.000 0.000 0.001

As mentioned above, three principal components are
extracted from the scale values of both surface and dis-
play samples, and similarities and differences in these
components may be observed. For further discussion,
Table 5 summarizes the correlations of the three prin-
cipal components of the surface and display samples.
Pearson coefficients indicate significantly high correla-
tions (p <0.005) between individual components, which
indicates that assessment of the visual perceptual proper-
ties of textiles via a display yields reliable results. Thus,
designing complex samples as a more convenient and
efficient alternative when surface samples are not readily
available is feasible.

In conclusion, three principal components are extracted
to explain the visual perceptions of textiles. These com-
ponents are described by regularity, smoothness, and
warmth and account for the placement rules of tex-
ture elements, depth, and emotion of textile samples.
The strength property could not be classified into any
component; thus, it is considered a high-level property.
Textiles with large texture elements exhibit properties

of regularity and coarseness, whereas textiles with sub-
tle texture elements are considered random and smooth.
Surface and display samples yield highly similar results.
The findings in this study contribute to the perceptual
model required in the description of texture correlated
with visual perception. The consistency between percep-
tual assessments of surface and display samples implies
that display samples may be adopted in future research
as a valid alternative to traditional surface samples. Vir-
tual samples will be generated in the future for further
experimentation to expand the scope of this study.
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